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New reaction and new catalyst—a personal perspective
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Abstract—A number of new synthetic methods are reviewed. Most of the methods are based on aluminum, boron, tin, silver Lewis acids and/
or Brønsted acid catalysts. Concepts of combined acid catalysis and super Brønsted acid catalysis are also summarized. These methods are
useful for selective organic transformations including simple natural product synthesis.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Although I am not a good Japanese chess (Shogi) player,
I admire one famous professional player, the late Kozo
Masuda (1918–1991), the most gifted Shogi player of his
era. He became a professional Shogi player while in his
youth. After years of practice and dedication, he quickly
climbed the ranks of the best and became the champion in
1957. His popularity did not derive from being an undefeat-
able champion; rather what was so special about his game
was that he invented completely novel strategies and tactics
in his matches. I was amazed by this and indeed I am sure it
was not a simple task. Famous professional Shogi players to-
day make use of the same conservative strategies in their
games. When people asked Mr. Masuda why he insisted
on inventing new strategies, his answer was simple: ‘‘I would
like to devote my life solely to creating unbeaten path’’
(shinn te isshou).

I respect his philosophy greatly and feel that his attitude to
Shogi exemplifies the ideal of a synthetic chemist. This
way of thinking is essential to preserving and making certain
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this lovely science is immortalized. Described herein is
a small contribution from our laboratories on organic synthe-
sis, particularly regarding the molecular design and engi-
neering of reagents and catalysts.

2. Aluminum amide: Lewis acid–Lewis base
cooperative system

O
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In my early days, I was interested in synthesizing several
sesquiterpenes from simple and readily available farnesol.
Although this is not actually a biomimetic route, the inven-
tion of possible synthetic routes is still quite challenging
(Scheme 1). For example, how can we prepare juvenile hor-
mone and humulene from farnesol?

OH COOMe

O
Cecropia juvenile hormoneHumulene Farnesol

Scheme 1.

Scheme 2 is one of our answers to this question. A key step
of synthesis is a vanadium-catalyzed epoxidation, which re-
sulted from fruitful collaboration with Professor Barry
Sharpless.1 The reaction proceeds with exceedingly high
erythro selectivities. The following steps proceed stereose-
lectively: copper alkylation and dehydration to generate
the key framework. Although the reaction of epoxides
with a strong base constitutes a well-known synthetic
method for preparation of the starting allylic alcohols, the in-
efficiency of this process led us to develop a new method: the
aluminum amides for this rearrangement.2
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The rearrangement proceeded smoothly using bulky alumi-
num amides. Thus, diethylaluminum 2,2,6,6-tetramethylpi-
peride reacted with the epoxide smoothly and gave the
allylic alcohols highly efficiently. The observed strict regio-
selectivity originated from the stereoselective coordination
of a sterically less hindered epoxide lone pair with the nitro-
gen of aluminum amide. Thus, the Lewis basicity of nitrogen
was increased significantly by coordination of epoxide to
aluminum. This was a new Lewis acid–Lewis base coopera-
tive reaction system (Scheme 3).

The stereoselective synthesis of humulene is shown in
Scheme 4. The key step of the synthesis is the palladium-
catalyzed medium ring cyclization, the first transition metal
catalyzed cyclization of a medium and a large ring. The
base-catalyzed elimination of oxetane to generate homo-
allylic alcohol proceeds smoothly using aluminum amide,
a transformation similar to that described above.3

These Lewis acid–Lewis base cooperating systems are
not only effective as an intramolecular system. The inter-
molecular version of the process was developed as
follows. Reexamination of Beckmann rearrangement using
organoaluminum reagents under aprotic conditions led to
the abstraction of the sulfonyl group, followed by capture
of the intermediary iminocarbocation or alkylidyneammo-
nium ion with the nucleophilic group (X; R2AlX (X¼H,
R, SR0, SeR0)) on the aluminum. Thus, aluminum reagents
act not only as a Lewis acid but also as a base.4 This method
opens a new synthetic entry to a variety of alkaloids such as
pumiliotoxin C (Scheme 5).5
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The intermediary iminocarbocation or alkylidyneammo-
nium ion generated by an organoaluminum can also be trap-
ped intramolecularly with olefinic groups.6 This interesting
rearrangement–cyclization sequence can be extended to an
efficient synthesis of muscopyridine (Scheme 6).7

3. Bulky aluminum reagents
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Most aluminum compounds in solution exist as dimeric,
trimeric, or higher oligomeric structures. In contrast,
methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide)
(MAD) and aluminum tris(2,6-diphenylphenoxide) (ATPH)
are monomeric in organic solvent. Lewis acidity of these
reagents decreases with the coordination of more electron-
donating aryloxides, but this can be compensated for
by loosening of the aggregation. Compared with classical
Lewis acids, the significant steric effect of our aluminum
reagents plays an important role in selective organic
synthesis.8–10
These bulky aluminum reagents can be prepared from steri-
cally hindered phenols. Thus, MAD and ATPH are readily
prepared by treatment of Me3Al with a corresponding
amount of the phenol in toluene (or in CH2Cl2) at room tem-
perature for 0.5–1 h with exclusion of air and moisture. The
reactivity of a phenol toward Me3Al largely depends on the
stereochemistry of the phenol (Scheme 7).

The X-ray crystal structure of the N,N-dimethylformamide–
ATPH complex11 disclosed that three arene rings of ATPH
form a propeller-like arrangement around the aluminum cen-
ter, and hence ATPH has a cavity with C3 symmetry. In con-
trast, the X-ray crystal structure of the benzaldehyde–ATPH
complex shows that the cavity surrounds the carbonyl sub-
strate upon complexation with slight distortion from C3 sym-
metry. A particularly notable structural feature of these
aluminum–carbonyl complexes is the Al–O–C angles and
Al–O distances, which clarify that the size and shape of
the cavity are flexible and change depending on the sub-
strates. According to these models, the cavity should be
able to differentiate carbonyl substrates, which when ac-
cepted into the cavity should exhibit unprecedented reactiv-
ity under the steric and electronic environments of the arene
rings (Fig. 1).

Selective 1,6-addition of alkyllithiums to aromatic carbonyl
substrates such as benzaldehyde or acetophenone was
achieved with ATPH to give functionalized cyclohexadienyl
compounds (Scheme 8).12 According to the molecular struc-
ture of the benzaldehyde–ATPH complex, it is obvious that
the para-position of benzaldehyde is deshielded by the three
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Figure 1.
arene rings, which effectively block the ortho-position as
well as the carbonyl carbon from nucleophilic attack. Al-
though conjugate addition to the ATPH–PhCHO complex
did not proceed effectively with smaller nucleophiles, we
were able to illustrate that ATPH–ArCOCl is superior to
ATPH–PhCHO for the nucleophilic dearomatic functionali-
zation. Several analytical and spectral data showed that the
ATPH–PhCOCl complex was more reactive than ATPH–
PhCHO (Scheme 9).13

A similar concept was used in a number of different organic
transformations, all of which used the selective coordination
of Lewis base including carbonyl compounds to ATPH or
MAD. Several examples are shown in Schemes 10–19.
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Scheme 19. New directed aldol condensation between two different carbonyl compounds.27,28
4. Chiral acetal and its application in organic synthesis
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Chiral acetals derived from aldehydes and (2R,4R)-2,4-
pentanediol are cleaved selectively by organoaluminum
reagents.29–33 The reaction proceeds via the retentive-alkyl-
ation process with >95% selectivity in most cases. The
reaction of acetals derived from (2R,4R)-2,4-pentanediol
and ketones in the presence of a catalytic amount of alumi-
num pentafluorophenoxide produces reductively cleaved
products with high diastereoselectivity. The reaction is
a useful means of diastereoselective cleavage of acetals: an
intramolecular Meerwein–Ponndorf–Verley reductive and
Oppenauer oxidative reaction on an acetal template (Scheme
20).34

In sharp contrast, alkylative cleavage of the same chiral ac-
etals using Lewis acid–alkylmetal systems and reductive
cleavage of the same acetals using Lewis acid–trialkylsilane
or dialkylsilane systems occur inversely.32,35–38 Examples of
this concept in synthesis are shown in Scheme 21.

(�)-Lardolure has been synthesized based on this discov-
ery.39 Thus, the compound was prepared elegantly by intra-
molecular cyclization of vinyl ether alcohol derived from
spiroacetal via triisobutylaluminum and further ring enlarge-
ment of the afforded bicyclic hemiacetals. In this simple
total synthesis, the entire chirality of the product was trans-
ferred from optically active 2,4-pentanediol (Scheme 22).
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5. Chiral Lewis acid catalysis
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In 1988 an ASI workshop on ‘Selectivities in Lewis acid-
promoted reactions’ was held in Greece, during which I pro-
posed the mechanism of our asymmetric propargylation
reaction using chiral allenyl boronic ester.40 In an enantioface
differentiating process, the chiral nucleophile was added
to the carbonyl group of aldehydes, thus allowing the prep-
aration of the chiral propargylic alcohols.41 Based on the
anti-coplanar complex structure of carbonyl–boron–allene
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moieties, we postulated the clockwise rotation of the O–C
bond prior to C–C bond formation (Fig. 2).

The reaction scheme shown in Figure 2 demonstrates that the
symmetry element coordinated on the metal center does
have a significant effect on the direction of the C–O rotation
and thus on the asymmetric induction of the reaction. Thus,
we initiated our projects for development of the chiral Lewis
acid catalyst, which has Cn symmetry elements.

On this basis, chiral Lewis acid catalyst, which has the C2

symmetry element was designed and tested for various
asymmetric syntheses. Thus, in 1985 we reported a zinc re-
agent and in 1988 a bulky aluminum reagent.42,43 The zinc
reagent was used for asymmetric cyclization of unsaturated
aldehyde and the aluminum reagent was used for asymmet-
ric hetero-Diels–Alder reaction with Danishefsky diene.
Both reagents effectively discriminate the enantioface of
aldehydes (Scheme 23).

This work was the forerunner of a vast amount of present-
day research on the binaphthol based chiral Lewis acid
catalyst. Furthermore, we and other groups have reported
various kinds of chiral Lewis acid catalysts, which have C2

symmetry elements and all of them have proven quite
effective for asymmetric carbon–carbon bond forming pro-
cesses.27,44 Not only main group metal catalysts but also
transition metal catalysts having the C2 symmetric structure
can be used for asymmetric synthesis via selective activation
of carbonyls.45

Scheme 23.
The first catalytic enantioselective Sakurai–Hosomi allyla-
tion was reported in 1991 by our laboratory (Scheme 24).46

Allylation of both aromatic and aliphatic aldehydes pro-
ceeded smoothly in the presence of 10–20 mol % of chiral
(acyloxy)borane (CAB) complex. Unfortunately, simple
allyltrimethylsilane was not sufficiently reactive under the
conditions used.

In 1996 we reported the second generation of the catalyst,
the BINAP–silver catalyst, and the reaction turned out to
be highly selective and reliable under mild reaction condi-
tions using allyltributyltin as an allylating reagent. BI-
NAP–AgOTf is an excellent catalyst for the catalytic
enantioselective allylation, methallylation, anti-selective
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crotylation, pentadienylation, and aldol reaction using corre-
sponding allyltributyltin reagents (Scheme 25).47 Subse-
quently, we have reported enantioselective addition of
allylic trimethoxysilanes to aldehydes catalyzed by
BINAP–AgF system (Scheme 25).45 It should be noted
that, when BINAP–AgOTf complex was used as a catalyst,
a racemic homoallylic alcohol was obtained in only 5%
yield. Both systems gave higher reactivity and enantioselec-
tivity compared with the other previously reported Lewis
acid-catalyzed methods using allyltributyltin.

In 2002 Shibasaki developed the general catalytic allylation
of ketones using allyltrimethoxysilane catalyzed by CuCl–
TBAT (Scheme 26).48,49 This is the first catalytic enantio-
selective Sakurai–Hosomi allylation of acetophenone.
Although the observed enantioselectivity was relatively
low, it was improved to 81% ee by choosing the ligand of
DuPHOS under the proper reaction conditions.
Our AgF system also gave us good selectivity after careful
examination of reaction conditions, especially catalyst
study. We earlier stated that more than three complexes
exist between silver and diphosphine (Fig. 3). According
to these studies, different reactivities and selectivities were
given by different complexes and it is important to generate
a single silver complex to achieve a high stereoselective
reaction; the 31P NMR of (a 1:1 mixtures of AgF and ligand)
revealed that (R)-DIFLUORPHOS gave predominantly 1:1
complex A, presumably due to the poor electron-donating
ability of the phosphorus atoms. With this catalyst in hand,
we observed 86% ee with acetophonone using 2 mol % of
catalyst.50

This catalyst system can be applied to various simple
ketones and corresponding tertiary homoallylic alcohols
were obtained with excellent enantioselectivities (up to
96% ee) (Scheme 27).
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Even more interestingly, the regio-, diastereo- and enantio-
selective crotylation has been achieved. E- or Z-crotyltri-
methoxysilane gave a similar diastereomer ratio with high
enantioselectivities. This finding introduces the utility of ra-
cemic allylsilanes for the enantioselective Sakurai–Hosomi
allylation reaction,50 which is an additional example of
dynamic kinetic asymmetric transformation (DYKAT) of
palladium proposed by Trost but a version with a different
nucleophilic addition (Scheme 28).51

Si(OMe)3

(R)-DIFLUORPHOS (5 mol%),
AgF (5 mol%),
MeOH (1 eq)

THF, -78 °C to  -40 °C+
Ph Me

O
Ph

Me OH

racemic

syn / anti = 96 (99% ee) / 4 

74% yield 

Scheme 28.

6. Combined acid catalysis
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O H

O
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In 1988 we reported a chiral Lewis acid catalyst of an acy-
loxyboron with a tartaric acid ligand.52 This was the first chi-
ral Lewis acid catalyst for aldol, ene, and Diels–Alder
reactions. The high reactivity of the tartaric acid derived cat-
alyst may originate from intramolecular hydrogen bonding
of the terminal carboxylic acid to the alkoxy oxygen (Fig. 4).

This was our first example of the ‘combined acids system’.53

It is known that coordinatively unsaturated monomers are far
more Lewis acidic than doubly bridged coordinatively satu-
rated dimers.54 A mono-coordinated complex, however, can

Lewis acid assisted Lewis acid catalyst
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BrØnsted acid assisted Lewis acid catalyst
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M
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M
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O
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Figure 5. Combined acid catalyst.
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Hydrogen bonding makes boron more acidic!

Figure 4.

H. Yamamoto / Tetrahed
generate and is even more Lewis acidic than the monomer
through the formation of a singly bridged dimer. This species
is the combined acid catalyst (Scheme 29).
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Scheme 29. Association of Lewis acid (LM).

It should be emphasized that we anticipated a more or less
intramolecular assembly of such combined systems rather
than intermolecular arrangements. Thus, proper design of
the catalyst structure is essential for success. The concept
of combined acids, which can be classified into Brønsted
acid-assisted Lewis acid (BLA), Lewis acid-assisted Lewis
acid (LLA), Lewis acid-assisted Brønsted acid (LBA), and
Brønsted acid-assisted Brønsted acid (BBA), can be a useful
tool for designing asymmetric catalysis, because combining
such acids will bring out their inherent reactivity by associa-
tive interaction and also provide a more organized structure,
both of which allow the securing of an effective asymmetric
environment (Fig. 5).

BLA: in addition to Figure 4, Figure 6 exemplifies another
boron based BLAs, which achieve high selectivity through
the double effect of intramolecular hydrogen bonding inter-
action and attractive p–p donor–acceptor interaction in the
transition state.55

LLA: reactive Lewis acid-assisted Lewis acid (LLA) catalysts
are relatively well known. Electron-deficient metal com-
pounds can be further activated as electrophiles through het-
ero- and homodimeric associative interactions. However, full
recognition of this synthetically powerful tool does not yet
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Figure 6. BLA for Diels–Alder reaction.
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appear to be widespread. It may be further extended to include
asymmetric catalysis design. Shown in Scheme 30 is an exam-
ple of LLA of chiral boron reagent activated by various achiral
Lewis acids including SnCl4, AlCl3, FeCl3, and others.56

LBA: combining Lewis acids and Brønsted acids to give
Lewis acid-assisted Brønsted acid (LBA) catalysts can pro-
vide an opportunity to design a unique chiral proton.56

Namely, the coordination of a Lewis acid to the hetero
atom of the Brønsted acid could significantly increase its
original acidity (Scheme 31).57

BBA: hydrogen bonding can frequently be observed inside
enzymes, and such a weak interaction has a crucial role in
organizing their three dimensional structure. Additionally,
the hydrogen bonding is often involved in the reaction inside
the active site of an enzyme. Such an elegant device could be
applicable to asymmetric catalysis. Especially for Brønsted
acid catalysis, the design of these catalysts would result not
only in formation of a highly organized chiral cavity but also
in an increase in the Brønsted acidity of the terminal proton
in a much milder way than that of the LBA system. We will
discuss more details in the next section.58

7. Nitroso chemistry

Recently, we discovered nitroso aldol (NA) reaction.59 NA
reaction is the reaction between carbonyl compound and
nitroso derivative to generate either a-hydroxyamino ketone
[N-NA)60 or a-aminoxy ketone (O-NA), depending on the
proper catalyst and reaction conditions. N-NA reaction has
a lengthy history having been discovered by Lewis in 1972
using an enamine with nitrosobenzene.61 Since hydroxy-
amino ketones can be dehydrated under acidic or basic
conditions to generate imines or ketones, this addition–

elimination process was reported even earlier.62 The O-NA
reaction, in contrast, has been discovered by us quite re-
cently.59 An asymmetric version of both N- and O-NA reac-
tions has been accomplished either by metal or Brønsted
acid (Scheme 32).58,63–65

Immediately after our reports, a succession of publications
appeared on this very unique and important reaction. We
recently published a review on this66 and highlights have
appeared by others.67 Our review has been one of the
most cited papers in Chemical Communications over the
last year.

Almost simultaneously, catalytic asymmetric nitroso hetero-
Diels–Alder (HDA) reaction was developed.68,69 Nitroso
HDA is a powerful process in organic synthesis because of
the concurrent introduction of nitrogen, oxygen, and olefinic
functional groups into an organic molecule in a single step.
Asymmetric catalytic nitroso HDA has long been a dream of
organic chemists because of the efficient creation of these
chiral centers in a molecule. Our basic concept was based
on the use of a pyridine moiety to aid in the coordination
of the metal catalyst. This simple idea worked beautifully
and we achieved the first true catalytic and asymmetric ver-
sion of this useful transformation (Scheme 33). Recently we
published a review article of these new HDA reactions,

which has been recognized as one of the most frequently
cited reviews of the journal in which it appeared.70

Immediately after these findings, we found that the organic
catalyst system was also applicable to this HDA transforma-
tion.71 Thus, starting from a,b-unsaturated carbonyl com-
pound, either O- or N-NA reaction followed by the Michael
addition sequence gave us a new heterocyclic product with
virtually complete enantioselectivities. Although there are
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two possibilities for this transformation, N-NA and Michael
or O-NA and Michael, we were able to establish the proper
choice of catalyst to accomplish these two reactions selec-
tively (Scheme 34).72 While this transformation can be ap-
plied not only to unsaturated carbonyl compounds but not
to simple 1,3-dienes, the utility of the method is quite broad.
It should be noted that both of the above transformations
(NA and HDA reactions) produced nitrogen–oxygen
bond. This bond was cleaved efficiently and selectively
after the reaction,73 and nitrogen and oxygen were
appropriately protected for the subsequent chemical trans-
formations.
N

+
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Scheme 33.
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8. Asymmetric epoxidation of allylic and homoallylic
alcohols
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The asymmetric oxidation of olefins is a subject of intensive
research in organic synthesis. The Sharpless asymmetric ep-
oxidation protocol of allylic alcohol has proven to be an ex-
tremely useful means of synthesizing enantiomerically
enriched epoxy alcohols. The huge contribution by Sharpless
has long been justifiably recognized.74 Thus, his titanium
reagent was reported in 1980 and since then has had an enor-
mous influence on modern organic synthesis. Although this is
an excellent reaction, it should be renovated significantly in
this century to fulfill the following conditions: (1) ligand
design to achieve high enantioselectivity even for Z-olefins,
(2) less than 1 mol % catalyst loading, (3) reaction conditions
at 0 �C or room temperature for less time, (4) use of readily
available and safe aqueous TBHP or CHP as an achiral
oxidant instead of anhydrous TBHP, and (5) easy work-up
procedure especially for small allylic alcohols.

In fact, because of these limitations Sharpless oxidation has
not been applied on an industrial scale. In comparison with
the well-known titanium catalysts, only a few examples of
chiral vanadium catalysts for the epoxidation have been
reported to date. As described earlier, we have applied vana-
dium-catalyzed epoxidation as the key step for selective syn-
thesis of juvenile hormone, and we believe that vanadium is
the catalyst of choice for stereoselective epoxidation of al-
lylic alcohols. However, there is one important remaining is-
sue to be solved before this excellent reagent will be a useful
catalytic asymmetric tool. Since, during the course of
oxidation, both vanadium(IV) and (V) are thought to exist
as an oxovanadium(V) complex that has three alkoxy groups
for substrate, hydroperoxides, and ligands, ligand design of
chiral vanadium catalysts has never been successfully estab-
lished to control such a complexation mode as proposed by
Sharpless. In other words, if 1 equiv of ligand were added,
the background epoxidation would be rather significant,
and if a large excess ligand were used, the reaction would
stop. This well-known ‘ligand deceleration effect’ should
be resolved before this is made a true catalytic asymmetric
process (Scheme 35).

Our bishydroxamic acid catalyst system satisfies some of these
conditions (Scheme 36).75 This ligand is a bidentate ligand,
which coordinates to vanadium rather strongly to prevent
further coordination from the second hydroxamic acid ligand.
In other words, the attachment of additional ligands to vana-
dium will be sterically restricted and doubly or triply coordi-
nated species, which are believed to be inactive and to cause
the ligand deceleration, should not be made problematic by
this bishydroxamic acid ligand. Furthermore, the amide car-
bonyl oxygens are forced to direct toward the cyclohexane
ring for steric reasons and the trans-geometry of hydroxamic
acid, thus generated, will give us a more acidic metal center.
In fact, careful molecular dynamic calculation shows that
there is only a very little contribution of cis conformer of hy-
droxamic amides. Overall, thevanadium catalyst should create
a pseudo C2 symmetric structure as shown in Scheme 36.

Using this system, we succeeded in asymmetric epoxidation
of various allylic alcohols including cis and small allylic
alcohols with high asymmetric inductions (Scheme 37).
The reaction conditions are fairly robust and scalable.

Obviously, the success of the reaction comes from the design
of a C2-symmetric bishydroxamic acid ligand, which cleanly
solves the ligand deceleration problems associated with
previous vanadium-catalyzed systems. We recently accom-
plished the asymmetric epoxidation of homoallylic alcohols
(Scheme 38), and these results can serve as a new and
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general tool for asymmetric oxidation in modern organic
syntheses.76

9. 8-Hydroxyquinolino ligands as a cis-b configuration
of metal catalyst

8-Hydroxyquinoline is a versatile ligand for metal ions. The
derivatives of this heterocyclic system have been extensively
studied from the viewpoint of analytical chemistry since
1926 and it is now widely used as one of the most reliable
analytical tools of trace amount of metal ions by absorption

N

N tBu

M
O
O L2

tBu

O

N O

N

spectrometric and fluorometric methods. In fact, 8-hydroxy-
quinoline (8-quinolinol) and its derivatives form stable metal
complexes with almost all of the metal ions including Al, Be,
Cu, Ce, Ca, Ga, In, Y, Fe, M, Mn, Mo, Sc, Sn, W, U, V, Nb,
Ti, and Zr. We plan to make chiral ligand using this impor-
tant heterocycles. The design of the ligand is quite simple:
the two 8-hydroxyquinole is tethered with chiral binaphthyl
moiety. Synthesis of a new chiral tethered bis(8-quinolino-
lato) (TBOxH) and its transformation to the chromium
catalyst are shown in Scheme 39.77

TBOxM may have a total of three geometric isomers, given
that it adapts octahedral coordination. The X-ray structure of
TBOxCrCl revealed that TBOxH ligand is bound to the
metal center in a cis-b configuration (Scheme 40). A crystal
structure of TBOxCrCl provided valuable information to
begin our investigation based on this ligand system, since
these metal complexes have all the necessary features of
rigid cis-b-configuration to redeem the previously well-
developed metal catalysts based on salen type ligands.
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Scheme 41.
9.1. Catalytic asymmetric pinacol coupling reaction

Chiral 1,2-diols are structural motifs often found in various
important natural products and have also proven valuable
as chiral ligands and auxiliaries in stereoselective organic
syntheses. Arguably, the most direct method to prepare
1,2-diols is a reductive coupling of simple aldehydes. How-
ever, the identification of a catalytic asymmetric pinacol
coupling reaction has remained a challenge for organic
chemistry since not only enantioselectivity but also dia-
stereoselectivity (DL vs. meso) need to be controlled in a
single bond-forming event. Thus, high stereoselectivity in
pinacol coupling reaction has remained elusive even through
stoichiometric protocols. Our new chiral tethered bis(8-qui-
nolinolato) (TBOx) chromium catalyst offered an excellent
solution to this challenging problem: the precatalyst (TBOx-
Cr(III)Cl), co-reducing agent (Mn), the product scavenger
(TESCl), and aldehyde were mixed in CH3CN under an
atmosphere of Ar at room temperature.78 The isolated crude
silyl ethers were treated with aqueous HCl in THF to afford
diols in high yields and excellent enantio- and diastereose-
lectivities (Scheme 41).77

9.2. Catalytic asymmetric Nozaki–Hiyama allylation
reaction

The addition of organochromium compounds to aldehydes,
known as the Nozaki–Hiyama (NH) reaction,79 has proven
to be a powerful C–C bond formation method by virtue of
its high chemo- and stereoselectivity and ease of the reac-
tion under mild conditions. Catalytic asymmetric NH
methodologies have been recognized as important and
effective methods as environmentally friendly processes
for the synthesis of chiral homoallylic alcohols.80 Although
there have been a limited number of reports on asymmetric
catalysis of these reactions, the enantioselectivities, yields,
and the scope of the substrates were not satisfactory. After
carefully optimizing the experimental parameters, an easy
reaction procedure was established for the NH allylation
reaction of different aldehydes to afford homoallylic alco-
hols in good yields and good enantioselectivities (Scheme
42).81 The catalyst loading could be decreased to 0.5 mol %
while maintaining good yields and enantioselectivities.

9.3. Catalytic asymmetric allenylation reaction

The allenylation reactions between aldehydes and propar-
gylic halides catalyzed by chromium complexes are known
to be very useful due to excellent chemoselectivity, broad
compatibility with different functional groups, and an envi-
ronmentally benign process. Only a very limited number of
catalytic asymmetric allenylations have been reported. How-
ever, there are still some difficulties in terms of: (1) the enan-
tioselectivities of a-allenic alcohols, (2) scope of substrates,
and (3) the ease of operation with commercially available
reagents. Our successful catalytic redox system was further
applied to the asymmetric allenylation reaction between al-
dehydes and commercially available 1-trimethylsilyl-3-bro-
mopropyne.82 Under the optimized reaction conditions,
a very wide scope of aldehydes were successfully alleny-
lated in moderate to high yields with excellent enantioselec-
tivities (Scheme 43). The aromatic aldehydes with either
electron-donating or electron-withdrawing groups gave ex-
cellent enantioselectivities. Furthermore, bulky aryl alde-
hydes, heterocyclic aldehyde, a,b-unsaturated aldehyde,
and aliphatic aldehydes proved to be good substrates for
this method.

The allenylation reactions of aldehydes with terminally alkyl
substituted propargylic bromide, which had never succeeded
with high enantioselectivities by Cr-catalyzed asymmetric
allenylation reactions, were also examined under the opti-
mized reaction conditions and the results were excellent
(Scheme 44).82

These three major contributions originated from our chiral
ligand under redox conditions. However, we also found
that the same chiral ligand is able to provide a unique and
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useful opportunity for generating new Lewis acid catalysts.
Although we have authored a number of reports on various
metal aryloxides including MAD and ATPH reagents, it
was rather difficult to make them chiral. Our new chiral li-
gand gave us a simple solution to this long-standing issue.
Thus, treatment of the ligand with alkylaluminum gave us
quantitative conversion to the chiral aluminum aryloxides,
which are excellent chiral Lewis acid catalysts and from
which various asymmetric transformations are possible as
shown in Scheme 45.

9.4. Asymmetric Mukaiyama–Michael addition reaction

The Lewis acid-promoted conjugate addition of silylketene
acetals and silyl enol ethers to a,b-unsaturated carbonyl
derivatives, the Mukaiyama–Michael (MM) reaction, is an
attractive alternative to the conventional metalloenolate pro-
cess due to its mild reaction condition and frequently supe-
rior regioselection.83 Catalytic asymmetric variants of this
process have received extensive attention and continue to
be powerful carbon–carbon bond forming reactions since
these methods provide synthetically useful enantioenriched
1,5-dicarbonyl synthons. Whereas various catalysts devel-
oped for the MM reaction have centered on the use of silyl-
ketene acetals, silyl enol ethers have received relatively little
attention in the context of asymmetric catalysis. This defi-
ciency in the aforementioned reaction may arise, in part,
from the decreased nucleophilicity of silyl enol ethers in
comparison to that of silylketene acetals. It was found
that a new chiral tethered bis(8-quinolinolato) (TBOx)
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aluminum(III) complex effectively catalyzed the highly
enantioselective MM reaction of silyl enol ethers, including
tetrasubstituted enolates that provided access to enantio-
merically enriched all-carbon quaternary centers, one of
the most difficult problems for asymmetric synthesis
(Scheme 45).84

10. Brønsted acid as a new tool for asymmetric synthesis

F F
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F F
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Tf
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F3C

F3C

O O

O O

Brønsted acid stronger than 100% sulfuric acid is called
super Brønsted acid by Gillespie.85 High utility of these
reagents has been demonstrated by simple Mukaiyama aldol
reaction as shown in Scheme 46.86

Although the real catalyst in this scheme is not Brønsted acid
but Me3SiNTf2, the high reactivity of this acid catalyst came
from the high reactivity of Tf2NH.87 The trifluoromethane-
sulfonyl (triflyl, Tf) group is one of the strongest neutral
electron-withdrawing groups. In particular, it greatly in-
creases the acidity of hydrogen atoms at a-positions. The
steric and electronic factors of the aromatic ring on arylbis(-
triflyl)methanes are expected to greatly influence their
Brønsted acidity and their catalytic activity and selectivity
for organic reactions. We have developed new strong carbon
Brønsted acids, pentafluorophenylbis(triflyl)methane and
polystyrene-bound tetrafluorophenylbis(triflyl)methane.88

The synthesis of the resin-bound Brønsted acid has been ac-
complished by using the nucleophilic para-substitution re-
action of lithium pentafluorophenylbis(triflyl)methide with
lithiated polystyrenes as a key step. This is the first example
of a highly acidic heterogeneous Brønsted acid catalyst that
is effectively swollen by non-polar organic solvents, and its
catalytic activities are superior to those of Nafion� SAC-13
(Scheme 47).89
Metal free chiral Brønsted acid catalysis has recently
emerged as a new class of chiral organic catalysis. Several
quite nice chiral Brønsted acids such as urea/thiourea, alco-
hol, and phosphoric acid have already been reported as a chi-
ral electron acceptor of carbonyl and imine compounds.
However, compared with chiral metal Lewis acid catalysts,
the utility of chiral Brønsted acid catalysts is still limited
to the reactive substrates. This drawback can be overcome
by designing the Brønsted acid catalyst with higher acidity,
which, in turn, will be the most important challenge for
Brønsted acid chemistry. In order to increase the acidity of
Brønsted acids, it is necessary to increase the stability of
the counter anion. We expected that strong chiral Brønsted
acid would be achieved by introduction of ]NTf group
into the phosphoric acid. We have succeeded in preparing
this super chiral Brønsted acid catalyst, which was able to
move forward asymmetric Diels–Alder reaction of unsatu-
rated ketones (Scheme 48).90

As described earlier, super Brønsted acid catalyst and super
silyl catalyst are inextricably linked. This comes from the
quick generation of silyl Lewis acid from super Brønsted
acid and silyl enol ether (or allylsilane). Since Me3SiNTf2

is a moisture sensitive reagent, a small amount of water in
the reaction mixture would cause its decomposition to give
Me3SiOH and HNTf2. Me3SiOH will react with Me3SiNTf2,
and provide inert Me3SiOSiMe3 and HNTf2. The regener-
ated HNTf2 will readily react with allyltrimethylsilane and
provide Me3SiNTf2 again.87 The repetition of this cycle
should produce strictly anhydrous conditions. Thus this cat-
alytic cycle constitutes a self-repair system for Lewis acid
catalysis. The same catalytic repair system will also be effec-
tive with silyl enol ether (Scheme 49).

The trimethylsilyl (TMS) group is a widely used protecting
group and Lewis acid, as well as an important functional
group in certain substrates. For these reasons we deemed
the TMS group to be ‘generation one’. We have recently de-
scribed that the use of triflimide as a catalyst initiator is very
effective for the aldehyde cross-aldol reaction.91 The success
of this reaction proved to be the use of triflimide as the cat-
alyst as well as the use of tris(trimethylsilyl)silyl (TTMSS)
R4

OSiMe3
R3

1. HNTf2 (1.0 mol%), Et2O, -78 °C, 15 min
2. Addition of R1R2C=O (1 equiv) at -78 °C over 2 h
3. Stirred at -78 °C, 15 min
4. 1 M HCl-THF (1:1) or TBAF/ THF

R4

O
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OH

R2

OH

Ph

O

87% yield

OH

Ph

92% yield (syn:anti = 70:30)

O OH

Ph

88% yield (syn:anti = 76:24)
(silyl enol ether, 96% Z

O

Ph

OOH

87% yield

Ph

OOH

92% yield
(step 3: -40 °C, 0.5 h)

Ph

Scheme 46.
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Scheme 47.
enol ethers.92 The use of the TTMSS group, also referred to
as the super silyl group, is one of the keys to this reaction and
its unique reactivity caused us to consider it as a second-gen-
eration silyl group.

The exceptional diastereoselectivity ‘control’ and high reac-
tivity of the TTMSS (super silyl) group can be attributed to

OH
OH

Ar

Ar

POCl3 (1.2 equiv)
DMAP (2 equiv)
Et3N (7 equiv)

CH2Cl2
0 °C ~ r.t., 2 h
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3: Ar = 1,3,5-(i-Pr)3C6H2

Et

O OSiR3

Me
R1
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+
3 (5 mol%)

toluene
-78 °C, 12 h

Me
COEt

R1
R3SiO

Scheme 48.
the two classic arguments of sterics and electronics. The
TTMSS group is extraordinarily bulky and has been reported
to shield molecular skeletons effectively.91 After the first ad-
dition and silyl transfer, the steric encumberment of this
group is likely to kinetically slow down the addition of a sec-
ond equivalent of nucleophile to a rate that does not compete
with the rate of the first addition. When all of the aldehyde
starting material have been consumed, a second addition
occurs giving the products with high diastereoselectivity.
After this second addition occurs, the aldehyde has b- and
d-TTMSSoxy groups and if catalyst coordination occurs,
the complex is likely too bulky for further additions.

Intrigued by TTMSSNTf2 catalysis, we used 29Si NMR as an
indicator of silicon Lewis acidity and found that the central

Me3SiNTf2

HNTf2

SiMe3

SiMe3 HNTf2+

excess

H2O

Me3SiOH

Scheme 49.
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Scheme 50.
silicon of TTMSSNTf2 was shifted significantly down-field
(>6 ppm) compared to TMS and TBSNTf2, and only
slightly down-field from pentamethyldisilane–NTf2 (62.2,
55.9, 55.5, and 60.8 ppm, respectively). This trend shows
a considerable difference in the cationic nature of silyl
groups with only silicon–carbon bonds versus those with sil-
icon–silicon bonds. This high reactivity of silyl enol ether as
well as super silyl cation is probably due to the high homo
level of Si–Si and Si–C sigma bond (Scheme 50).

11. Conclusion

In the sunset of his life, Mr. Kozo Masuda chose to write,
‘‘Even after a long journey, the goal remains far away.’’
(Tadorikite imada sanroku.) I believe the optimal designing
in organic synthesis is still distant from the ultimate goal
and I am sure that wonderful golden ages are yet to be
experienced.

I would like to acknowledge many outstanding contributors
in my research groups from Kyoto, Hawaii, Nagoya, and
Chicago. If some of the chemistry mentioned in this review
is significant, the honor should go to these individuals.
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